Article Timeliness Reminder
It has been 1274 days since the last update, the content may be outdated.
第一步 常规配置
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
| library(Matrix) library(Seurat) library(plyr) library(dplyr) library(patchwork) library(purrr)
rm(list = ls()) # 配置数据路径 root_path = "~/zlliu/R_data/TCGA" # 配置结果保存路径 output_path = root_path if (!file.exists(output_path)){dir.create(output_path)} # 设置工作目录,输出文件将保存在此目录下 setwd(output_path) getwd()
GAUSS
|
1
| scRNA <- f_read10x('CRPC-PRAD')
ISBL
|
第二步 质量控制
1 2 3 4 5 6 7
| options(repr.plot.width=12, repr.plot.height=6) options(ggrepel.max.overlaps = Inf) library(ggplot2) for (scRNAo in scRNA){ print(VlnPlot(scRNAo, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3) + labs(title = scRNAo@project.name)) }
LESS
|
第三步 整合数据
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| f_go4pca <- function(scRNA){ for (lc_ba in names(scRNA)){ scRNA[[lc_ba]] <- scRNA[[lc_ba]] %>% NormalizeData() %>% FindVariableFeatures() all.genes <- rownames(scRNA[[lc_ba]]) scRNA[[lc_ba]] <- ScaleData(scRNA[[lc_ba]], features = all.genes) scRNA[[lc_ba]] <- RunPCA(scRNA[[lc_ba]], features = VariableFeatures(object = scRNA[[lc_ba]])) } scRNA } f_go4group <- function(scRNA, mdN, mdNo='orig.ident', s=1, e=4){ for (lc_ba in names(scRNA)){ scRNA[[lc_ba]][[mdN]] <- substr(unlist(scRNA[[lc_ba]][[mdNo]]),s,e) } scRNA }
LUA
|
1 2 3
| scRNA <- f_go4group(scRNA, 'group') scRNA <- f_go4group(scRNA, 'batch', s=5, e=5) scRNA <- Reduce(function(...) merge(...), scRNA)
ACTIONSCRIPT
|
1 2 3 4
| scRNA <- scRNA %>% NormalizeData() %>% FindVariableFeatures() all.genes <- rownames(scRNA) scRNA <- ScaleData(scRNA, features = all.genes) scRNA <- RunPCA(scRNA, features = VariableFeatures(object = scRNA))
REASONML
|
1 2
| library(harmony) scRNA = scRNA %>% RunHarmony("batch", plot_convergence = TRUE)
ERLANG
|
第四步 基于 Harmony 进行分群
1 2 3 4 5 6
| scRNA <- scRNA %>% RunUMAP(reduction = "harmony", dims = 1:30) scRNA <- scRNA %>% FindNeighbors(reduction = "harmony") %>% FindClusters(resolution = 0.1) scRNA[['t_RNA_snn_res.0.1']] <- Idents(scRNA) Idents(scRNA) <- scRNA[['t_RNA_snn_res.0.1']] all_markers <- FindAllMarkers(scRNA, min.pct = 0.25, logfc.threshold = 0.25) significant_markers <- subset(all_markers, subset = p_val_adj<0.05)
REASONML
|
Seurat (六) 整合数据(二)
https://b.limour.top/1014.html