从差异基因到RRA聚合

通过比对,我们得到了counts矩阵,接下来可以进行DEGs分析。此时如果我们有多组之间的对比,则可以使用RRA算法来聚合我们的结果。RRA的安装过程见此

第一步,多组差异基因分析

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
library(DESeq2)
count_all <- read.csv("~/upload/zl_liu/star_data/yyz_01/yyz_01.csv",header=TRUE)
count_all
cts_b <- count_all[ ,c(-1,-2,-3)]
rownames(cts_b) <- count_all$ID
keep <- rowSums(cts_b) > ncol(cts_b)
cts_b[keep,]
f_DESeq2 <- function(cts_bb, rowInfo, ControlN, TreatN, rm.NA=T){
cts_b <- cts_bb[,c(ControlN, TreatN)]
conditions <- factor(c(rep("Control",length(ControlN)), rep("Treat",length(TreatN))))
colData_b <- data.frame(row.names = colnames(cts_b), conditions)
print(colData_b)
dds <- DESeqDataSetFromMatrix(countData = cts_b,
colData = colData_b,
design = ~ conditions)
dds <- DESeq(dds)
res <- results(dds)
rres <- cbind(rowInfo, data.frame(res))
if(rm.NA){rres <- rres[!is.na(rres$padj),]}
rres <- rres[order(rres$log2FoldChange, decreasing = T),]
saveRDS(rres, paste('DEGs', paste(TreatN, collapse = '_'), 'vs.', paste(ControlN, collapse = '_'), 'DESeq2.rds',sep = '_'))
rres
}
Ct1 <- c('X1.control.DMSO', 'X2.control.DMSO')
Tt1 <- c('X1.OE.DMSO', 'X2.OE.DMSO')
Ct2 <- c('X1.OE.DMSO', 'X2.OE.DMSO')
Tt2 <- c('X1.OE.Enz', 'X2.OE.Enz')
Ct3 <- c('X1.control.Enz', 'X2.control.Enz')
Tt3 <- c('X1.OE.Enz', 'X2.OE.Enz')
Ct4 <- c('X1.CAF.DMSO', 'X2.CAF.DMSO')
Tt4 <- c('X1.CAF.Enz', 'X2.CAF.Enz')
r1 <- f_DESeq2(cts_b[keep,], count_all[keep,c(1,2,3)], Ct1, Tt1)
r2 <- f_DESeq2(cts_b[keep,], count_all[keep,c(1,2,3)], Ct2, Tt2)
r3 <- f_DESeq2(cts_b[keep,], count_all[keep,c(1,2,3)], Ct3, Tt3)
r4 <- f_DESeq2(cts_b[keep,], count_all[keep,c(1,2,3)], Ct4, Tt4)

第二步,RRA聚合差异结果

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
require(RobustRankAggreg)
f_dflist_RRA <- function(dflist, nameN, N, orderN, decreasing=T){
res <- list()
for (name in names(dflist)){
tmp <- dflist[[name]]
if (nrow(tmp) == 1){
res[[name]] <- tmp[1, nameN]
}else if(nrow(tmp) >=2){
res[[name]] <- tmp[order(tmp[[orderN]],decreasing = decreasing), nameN]
}
}
if(length(res) < 1){ return(NULL)}
aggregateRanks(glist = res, N = N)
}
rownames(count_all) <- count_all$ID

r <- list(r1=r1,r2=r2,r3=r3,r4=r4)
r <- lapply(r, FUN = function(x){subset(x, padj<0.05 & log2FoldChange > 1)})
r <- f_dflist_RRA(r, 'ID', sum(keep), 'log2FoldChange')
r <- cbind(count_all[r$Name,c(2,3)], r)
r
write.csv(r, 'RRA_up.csv')

r <- list(r1=r1,r2=r2,r3=r3,r4=r4)
r <- lapply(r, FUN = function(x){subset(x, padj<0.05 & log2FoldChange < -1)})
r <- f_dflist_RRA(r, 'ID', sum(keep), 'log2FoldChange', decreasing = F)
r <- cbind(count_all[r$Name,c(2,3)], r)
r
write.csv(r, 'RRA_down.csv')

从差异基因到RRA聚合
https://b.limour.top/1925.html
Author
Limour
Posted on
July 22, 2022
Licensed under