- TMM:The Trimmed Mean of M value by edgeR
 
- VST:The variance stabilizing transformation by DESeq2
 
- RLOG:The regularized-logarithm transformation by DESeq2
 
Counts矩阵来源于STAR匹配得到的结果:df <- read.csv('GSE123379.csv', row.names = 1)
安装补充包
TMM方法
1 2 3 4 5 6 7 8 9
   | f_counts2TMM <- function(countsMatrix){     require(edgeR)     TMM <- DGEList(counts = countsMatrix)     TMM <- calcNormFactors(TMM, method = 'TMM')     cpm(TMM, normalized.lib.sizes = TRUE, log=F) } countsMatrix <- df[-(1:3)] TMM <- f_counts2TMM(countsMatrix) TMM
 
  | 
 
VST方法
1 2 3 4 5 6 7 8 9 10 11 12 13
   | f_counts2VST <- function(countsMatrix){     require(DESeq2)     conditions <- factor(rep("Control",ncol(countsMatrix)))     colData_b <- data.frame(row.names = colnames(countsMatrix), conditions)     dds <- DESeqDataSetFromMatrix(countData = countsMatrix,                               colData = colData_b,                               design = ~ 1)     vsd <- vst(object=dds, blind=T)      assay(vsd) } countsMatrix <- df[-(1:3)] VST <- f_counts2VST(countsMatrix) VST
 
  | 
 
RLOG方法
1 2 3 4 5 6 7 8 9 10 11 12 13
   | f_counts2RLOG <- function(countsMatrix){     require(DESeq2)     conditions <- factor(rep("Control",ncol(countsMatrix)))     colData_b <- data.frame(row.names = colnames(countsMatrix), conditions)     dds <- DESeqDataSetFromMatrix(countData = countsMatrix,                               colData = colData_b,                               design = ~ 1)     rld  <- rlog(object=dds, blind=T)      assay(rld) } countsMatrix <- df[-(1:3)] RLOG <- f_counts2RLOG(countsMatrix) RLOG
 
  |