Python后缀表达式在解方程中的应用

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import re
from fractions import Fraction

class Stack(list):
def isEmpty(self):
return self == []
def peek(self):
if self == []: return None
else: return self[-1]
def size(self):
return len(self)
push = list.append
def pop(self):
if self == []: return None
else: return super().pop()

class Polynomial(list):
def __init__(self, value):
for item in value: self.append(Fraction(item))
def add(self, value):
if len(self) < len(value): self += [Fraction(0)]*(len(value)-len(self))
for i in range(len(value)): self[i] += value[i]
def sub(self, value):
if len(self) < len(value): self += [Fraction(0)]*(len(value)-len(self))
for i in range(len(value)): self[i] -= value[i]
def mul(self, value):
tmp = self.copy()
size = len(self)
self.clear()
self += [Fraction(0)]*(size+len(value)-1)
for i,item in enumerate(value):
for j in range(size):
self[i+j] += tmp[j]*item
def divn(self, n):
if type(n) is Polynomial:
for i in range(len(self)): self[i] /= n[0]
else:
_n = Fraction(n)
for i in range(len(self)): self[i] /= _n
def __str__(self):
if self == []:
return '0'
elif len(self) == 1:
return str(self[0])
elif len(self) == 2:
return f'({self[1]})x + {self[0]}'
else: pass

def get_Formula(equation):
return equation.replace(' ','').split('=')

_ep = re.compile(r'([\+\-\*/()][^\+\-\*/()]+)')
_op = {
'+': lambda x,y:x.add(y),
'-': lambda x,y:x.sub(y),
'*': lambda x,y:x.mul(y),
'/': lambda x,y:x.divn(y)
}
def _middle2behind(Fma, res, s, e):
sta = Stack()
_s = s
while s < e:
if Fma[s] in '+-':
if sta.isEmpty():
sta.push(Fma[s])
s += 1
elif sta.peek() in '*/':
while sta: res.push(sta.pop())
sta.push(Fma[s])
s += 1
elif sta.peek() in '+-':
res.push(sta.pop())
sta.push(Fma[s])
s += 1
elif Fma[s] in '*/':
if sta.isEmpty():
sta.push(Fma[s])
s += 1
elif sta.peek() in '+-':
sta.push(Fma[s])
s += 1
elif sta.peek() in '*/':
res.push(sta.pop())
sta.push(Fma[s])
s += 1
elif Fma[s] == '(':
s += 1
d = _middle2behind(Fma, res, s, e)
s += d
elif Fma[s] == ')':
s += 1
break
else:
res.push(Fma[s])
s += 1
while sta: res.push(sta.pop())
return s-_s
def middle2behind(Formula):
if Formula.startswith('-'): Formula = '0' + Formula
expr = _ep.findall(Formula.replace('(-','(0-'))
res = Stack()
_middle2behind(expr, res, 0, len(expr))
return res
def str2polynomial(_str):
if _str.endswith('x'):
if _str == 'x': return Polynomial((0, 1))
return Polynomial((0, _str.rstrip('x')))
else: return Polynomial((_str,))
def not_eval(Formula):
expr = middle2behind(Formula)
#print(expr)
sta = Stack()
for item in expr:
if item in _op:
y = sta.pop()
x = sta.pop()
_op[item](x, y)
sta.push(x)
else: sta.push(str2polynomial(item))
#print(sta)
return sta.pop()

_x = re.compile(r'[a-zA-Z]+')
def solve_eq(equation):
print(f'equation is \t\t{equation}')
xname = set(_x.findall(equation))
if len(xname) != 1:
#print(xname)
print(f'别逗,{equation}是一元一次方程吗?')
return
xname = xname.pop()
Fma = get_Formula(_x.sub('x', equation))
if len(Fma) != 2:
print('{equation}不是标准方程!')
return
Fma = [not_eval(expr) for expr in Fma]
print(f'Simplification is \t{Fma[0]} = {Fma[1]}')
tmp = Fma[0]
tmp.sub(Fma[1])
print(f'Transposition is \t{tmp} = 0')
if len(tmp) < 2 or tmp[1] == 0:
print(f'{xname} 无解')
else:
x = -tmp[0]/tmp[1]
print(f'{xname} = x = {x}')


Python后缀表达式在解方程中的应用
https://b.limour.top/496.html
Author
Limour
Posted on
December 23, 2020
Licensed under