TCGAbiolinks下载maf数据 下载数据 ~/dev/xray/xray -c ~/etc/xui2.json & 123456789101112library(TCGAbiolinks)Sys.setenv("http_proxy"="http://127.0.0.1:20809")Sys.setenv("https_proxy"="http://127.0.0.1:20809")PRAD <- GDCquery(project = 'TCGA-PRAD', data.category = "Simple Nucleotide Variation", access = "open", legacy = FALSE, data.type = "Masked Somatic Mutation", workflow.type = "Aliquot Ensemble Somatic Variant Merging and Masking")GDCdownload(PRAD)maf <- GDCprepare(PRAD)saveRDS(maf, 'prad.maf') 清洗数据123456789library(dplyr)prad <- readRDS('prad.maf')type <- as.numeric(substr(prad$Tumor_Sample_Barcode, 14, 15))prad <- subset(prad, type < 10) # tpgroup <- readRDS('../idea_2/fig3.2/fig5/tcga.predict.rds')prad$BarCode <- substr(prad$Tumor_Sample_Barcode,1, 12)group$BarCode <- rownames(group)prad <- subset(prad, prad$BarCode %in% group$BarCode)prad <- left_join(x = prad, y = group, by = 'BarCode') 分两组导入maftools中12345library(maftools)prad_l <- subset(prad, group=='Low Risk')prad_h <- subset(prad, group=='High Risk')maf_l <- read.maf(prad_l)maf_h <- read.maf(prad_h) 比较并进行可视化12lvsh <- mafCompare(m1=maf_l, m2=maf_h, m1Name="Low Risk", m2Name="High Risk", minMut=5)saveRDS(lvsh, 'lvsh.rds') 森林图展示突变数量差异12options(repr.plot.width=8, repr.plot.height=6)forestPlot(mafCompareRes=lvsh, pVal=0.05, color=c("maroon", "royalblue"), geneFontSize=1.2) 瀑布图oncoplot展示突变景观123options(repr.plot.width=12, repr.plot.height=8)genes <- subset(lvsh$results, pval < 0.05)$Hugo_SymbolcoOncoplot(m1=maf_l, m2=maf_h, m1Name="Low Risk", m2Name="High Risk", genes=genes) 棒棒糖图深入特定基因突变细节12options(repr.plot.width=12, repr.plot.height=6)lollipopPlot2(m1=maf_l, m2=maf_h, m1_name="Low Risk", m2_name="High Risk", gene="TP53", AACol1 = "HGVSp_Short", AACol2 = "HGVSp_Short") uncategorized TCGAbiolinks下载maf数据 https://b.limour.top/2008.html Author Limour Posted on September 6, 2022 Licensed under TCGAbiolinks下载CNV数据 Previous TCGA突变数据使用记录(一) Next Please enable JavaScript to view the comments